Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements
نویسنده
چکیده
Parameterizations of aerodynamic resistance to heat and water transfer have a significant impact on the accuracy of models of land – atmosphere interactions and of estimated surface fluxes using spectro-radiometric data collected from aircrafts and satellites. We have used measurements from an eddy correlation system to derive the aerodynamic resistance to heat transfer over a bare soil surface as well as over a maize canopy. Diurnal variations of aerodynamic resistance have been analyzed. The results showed that the diurnal variation of aerodynamic resistance during daytime (07:00 h–18:00 h) was significant for both the bare soil surface and the maize canopy although the range of variation was limited. Based on the measurements made by the eddy correlation system, a comprehensive evaluation of eight popularly used parameterization schemes of aerodynamic resistance was carried out. The roughness length for heat transfer is a crucial parameter in the estimation of aerodynamic resistance to heat transfer and can neither be taken as a constant nor be neglected. Comparing with the measurements, the parameterizations by Choudhury et al. (1986), Viney (1991), Yang et al. (2001) and the modified forms of Verma et al. (1976) and Mahrt and Ek (1984) by inclusion of roughness length for heat transfer gave good agreements with the measurements, while the parameterizations by Hatfield et al. (1983) and Xie (1988) showed larger errors even though the roughness length for heat transfer has been taken into account.
منابع مشابه
Heat Transfer Enhancement of a Flat Plate Boundary Layer Distributed by a Square Cylinder: Particle Image Velocimetry and Temperature-Sensitive Paint Measurements and Proper Orthogonal Decomposition Analysis
The current empirical study was conducted to investigate the wall neighborhood impact on the two-dimensional flow structure and heat transfer enhancement behind a square cylinder. The low- velocity open-circle wind tunnel was used to carry out the study tests considering the cylinder diameter (D)-based Reynolds number (ReD) of 5130. The selected items to compare were different gap he...
متن کاملEVALUATION OF PRESSURE EFFECT ON HEAT TRANSFER COEFFICIENT AT THE METAL- MOLD INTERFACE FOR CASTING OF A356 AL ALLOY
Abstract: During solidification and casting in metallic molds, the heat flow is controlled by the thermal resistance at the casting-mold interface. Thus heat transfer coefficient at the metal- mold interface has a predominant effect on the rate of heat transfer. In some processes such as low pressure and die-casting, the effect of pressure on molten metal will affect the rate of heat transfer a...
متن کاملComparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman-Monteith Method with Satellite-Based Surface Energy Balance
A surface energy balance was conducted to calculate the latent heat flux (λE) using aerodynamic methods and the Penman–Monteith (PM) method. Computations were based on gridded weather and Landsat satellite reflected and thermal data. The surface energy balance facilitated a comparison of impacts of different parameterizations and assumptions, while calculating λE over large areas through the us...
متن کاملEstimating the unknown heat flux on the wall of a heat exchanger internal tube using inverse method
In the design of heat exchangers, it is necessary to determine the heat transfer rate between hot and cold fluids in order to calculate the overall heat transfer coefficient and the heat exchanger efficiency. Heat transfer rate can be determined by inverse methods. In this study, the unknown space-time dependent heat flux imposed on the wall of a heat exchanger internal tube is estimated by app...
متن کاملEffect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel
The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The thermal and flow fields were analyzed using different volume fractions of n...
متن کامل